<u>Distribution Of Syllabus & Lesson Plan/Teaching Plan</u> (2020-21)

Name Of Department: Chemistry

Class:_B.Sc-3rd Yr (Sem-5)

Paper: A (Inorganic Chemistry)

Two weeks left for MST tentative and one week for revision /queries for MST

TIME PEROID	TOPICS TO BE COVERED
Week 1	Metal-ligand Bonding in Transition Metal Complexes.
Week 2	Limitations of valence bond theory, an elementary idea of crystal- field theory crystal field splitting in octahedral, tetrahedral and square planar complexes,
Week 3	factors affecting the crystal-field parameters.
Week 4	Thermodynamic and Kinetic Aspects of Metal Complexes A brief outline of thermodynamic at 1 illustrations.
Week 5	A brief outline of thermodynamic stability of metal complexes factors affecting the stability, substitution reactions of square planar complexes.
Week 6	Magnetic Properties of Transition Metal Complexes Types of magnetic behaviour, methods of determining magnetic susceptibility
Week 7	spin-only formula, L-S coupling, Correlation of μ_s and μ_{eff} values, orbital contribution to magnetic moment,
Week 8	application of magnetic moment data for 3d-metal complexes
Week 9	Electronic Spectra of Transition Metal Complexes. Types of electronic transitions, selection rules for d-d transitions
Week 10	spectroscopic ground states, spectrochemical series. Orgel-energy level diagram for d ¹ and d ⁹ states,
Week 11	discussion of electronic spectrum of [Ti (H ₂ O) ₆] ³⁺ complexion.
Week 12	Revison

(AJAY KUMAR)

Head of Chemistry Deptt.

Govt, College, ROPAR

<u>Distribution Of Syllabus & Lesson Plan/Teaching Plan</u> (2020-21)

Name Of Department: Chemistry

Class:_B.Sc-3rd Yr (Sem-5)

Paper: B (Organic Chemistry)

Two weeks left for MST tentative and one week for revision /queries for MST

TDAD	
TIME PEROID	TOPICS TO BE COVERED
Week 1	Spectroscopy
	Nuclear magnetic resonance (NMR) spectroscopy.
	Proton magnetic resonance (IH NMR) spectroscopy
Week 2	nuclear shielding and deshielding, chemical shift and molecular structure,
	spin-spin splitting and coupling constants,
Week 3	areas of signals interpretation of PMR spectra of simple organic molecules
	such as ethyl bromide, ethanol, acetaldehyde, 1,1,2 tribromoethane, ethyl
	acetate, toluene and acetophenone.
Week 4	Electromagnetic spectrum: Absorption Spectra
	Ultraviolet (UV) absorption spectroscopy-absorption laws (Beer-Lambert's
	law, Molar absorptivity, presentation and analysis of UV Spectra
Week 5	types of electronic transitions, effect of conjugation. Concept of chromophore
	and auxochrome. Bathochromic, hypsochromic, hyperchromic and
	hypochromic shifts. UV spectra of conjugated enes and enones.
Week 6	Infrared (IR): Infrared (IR) absorption spectroscopy-molecular vibrations.
	Hooke's law, Selection rules, intensity and position of IR bands
Week 7	measurement of IR spectrum, fingerprint region, characteristic absorption of
	various functional groups and Interpretation of IR spectra of simple organic
377 1 0	compounds.
Week 8	Problems pertaining to the structure elucidation of simple organic compounds
W1-0	using UV, IR, and PMR spectroscopic techniques
Week 9	Organometallic Compounds
	Organomagnesium Compounds The Grignard reagents formation, structure and chemical reactions.
Week 10	
week 10	i i i i i i i i i i i i i i i i i i i
Week 11	Organolithium compounds: formation and chemical reactions
week 11	Organosulphur Compounds: Nomenclature, structural features,
	methods of formation and chemical reactions of thiols, thioethers, sulphonic
Week 12	acids, and sulphonamides. Revison
WEEK 12	ICEVISUII

(AJAY KUMAR)

Head of Chemistry Deptt.

Principal hyp.

Govt. College, ROPAR

<u>Distribution Of Syllabus & Lesson Plan/Teaching Plan</u> (2020-21)

Name Of Department: Chemistry

Class:_B.Sc-3rd Yr (Sem-5)

Paper: C (Physical Chemistry)

Two weeks left for MST tentative and one week for revision /queries for MST

TIME	TOPICS TO BE COVERED
PEROID	TOTIOS TO BE GOVERED
Week 1	I. Elementary Quantum Mechanics
	Black-body radiations, Planck's radiation
	law, photoelectric effect, heat capacity of solids.
	solids.
Week 2	Sinusoidal wave equation Hamiltonian operator, Schrodinger wave equation
	and its importance,
Week 3	physical interpretation of the wave function, postulates of quantum mechanics,
	particle in a one dimensional box.
Week 4	Sehrodinger wave equation for H-atom, separation into three equations (without
*** 1.5	derivation),
Week 5	quantum numbers and their importance, hydrogen like wave functions, radial
	wave functions, angular wave functions.
Week 6	II. Spectroscopy
	Introduction:
	Electromagnetic radiation, regions of spectrum, basic features of different
	spectrometers, statement of Born-Oppenheimer approximation, degrees of freedom
Week 7	Rotational Spectrum :
	Diatomic molecules. Energy levels of a rigid rotor (semi-classical principles),
	selection rules,
Week 8	spectral intensity, determination of bond length, qualitative description of non-
*** 1.0	rigid rotor, isotope effect
Week 9	Vibrational Spectrum:
	Infrared spectrum: Energy levels of simple harmonic oscillator, selection rules,
Week 10	pure vibrational spectrum, intensity
WEEK 10	determination of force constant and qualitative relation of force constant and bond energies,
Week 11	effect of anharmonic motion and isotope on the spectrum, idea of vibrational
	frequencies of different functional groups
Week 12	Revison

Jatuste high.
Principal
Govt. College, ROPAR

(AJAY KUMAR)

Head of Chemistry Deptt.

Distribution Of Syllabus & Lesson Plan/Teaching Plan (2020-21)

Name Of Department: Chemistry

Class:_B.Sc-3rd Yr(Sem-6)

Paper: A (Inorganic Chemistry)

Two weeks left for MST tentative and one week for revision /queries for MST

TIME	TOPICS TO BE COVERED
PEROID	
Week1	Hard and Soft acids and Bases (HSAB)
	Classification of acids and bases as a hard and soft, Pearson's HSAB concept
Week2	acid-base strength and hardness and softness. Symbiosis
Week3	theoretical basis of hardness and softness, electronegativity and hardness and softness
Week4	Bioinorganic Chemistry
	Essential and trace elements in biological processes, metalloporphyrins with special reference to haemoglobin and myoglobin
	Biological role of alkali and alkaline earth metal ions with special
Week5	reference to Ca ⁺² , Nitrogen fixation.
Week6	Silicones and Phosphazenes
	Silicones and Phosphazenes as examples of inorganic polymers, Nature of bonding in triphosphazenes.
	Organometallic Chemistry
Week7	Definition, Nomenclature and classification of organometallic compounds. Preparation, properties,
Week8	bonding and applications of alkyls of Li, Al, Hg, Sn and Ti, a brief account of metal-ethylene complexes
Week9	Homogeneous hydrogenation, mononuclear carbonyls the nature of bonding in metal carbonyls
Week10	The nature of bonding in metal carbonyls
Week11&12	Revision

(AJAY KUMAR)

Head of Chemistry Deptt.

Govt. College, ROPAR

<u>Distribution Of Syllabus & Lesson Plan/Teaching Plan</u> (2020-21)

Name Of Department: Chemistry

Class:_B.Sc-3rd Yr(Sem-6)

Paper: B (Organic Chemistry)

Two weeks left for MST tentative and one week for revision /queries for MST

TIME	TOPICS TO BE COVERED
PEROID	
Week1	Heterocyclic Compounds:-Introduction: Molecular orbital picture and aromatic characteristics of pyrrole, furan, thiophene and pyridine. Methods of synthesis and chemical reactions with particular emphasis on mechanism of electrophlic substitution.
Week2	Mechanism of nucleophlic substitution reaction in pyridine derivatives. Comparison of basicity of pyridine, piperidine and pyrrole.
Week3	Introduction to condensed five and six membered heterocycles. Preparation and reactions of indole, quinoline and isoquinoline with special reference to Fischer indole synthesis,
Week4	Skraup synthesis and Bischler- Napieralski synthesis. Mechanism of electrophlic substitution reactions of indole, quinoline and isoquinoline.
Week5	Synthesis of Polymers: - Ziegler-Natta polymerziation and vinyl polymers. Condensation or step growth polymerziation. Urea formaldhehyde resins, epoxy resins and polyurethanes. Natural and synthetic rubbers.
Week 7	Organic Synthesis Via Enolates: - Acidity of α-hydrogens, alkylation of diethyl malonate and ethyl acetoacetate. Synthesis of ethyl acetoacetate: the Claisen condensation. Keto-enol tautomerism of ethyl acetoacetate. Alkylation and acylation of enamines. Keto-enol tautomerism of ethyl acetoacetate. Alkylation and acylation of enamines.
Week 8	Carbohydrates: Classification and nomenclature, Monosaccharides, mechanism of osazone formation, Interconversion of glucose and fructose, chain lengthening and chain shortening of aldoses.
Week9	Configuration of monosaccharides. Erythro and threodiastereomers. Conversion of glucose into mannose. Cyclic structure of D (+)-glucose. Mechanism of mutarotation.
Week10	Structures of ribose and deoxyribose. An introduction to disaccharides (maltose, sucrose and lactose) and polysaccharide starch and cellulose without involving structure determination
Weekll	Amino Acids, Peptides, Proteins and Nucleic Acids:-Classification, structure and stereochemistry of amino acids. Acid base behaviour, isoelectric point and electrophoresis. Preparation and reactions of α-amino acids.
Week12	Structure and nomenclature of peptides and proteins. Classification of proteins. Peptide structure determination, selective hydrolysis of peptides. Protein denaturation/renaturation
	Valuate Maria

Principal

Govt. College, ROPAR

A Pay August Deptt.

Distribution Of Syllabus & Lesson Plan/Teaching Plan (2020-21)

Name Of Department: Chemistry

Class:_B.Sc-3rd Yr(Sem-6)

Paper: C (Physical Chemistry)

Two weeks left for MST tentative and one week for revision /queries for MST

TIME	TOPICS TO BE COVERED
Weekl	 Raman Spectrum: Concept of polarizability, pure rotational and pure vibrational Raman spectra of diatomic molecules, selection rules
Week2	II. Electronic Spectrum: Concept of potential energy curves for bonding and antibondingmolecular orbitals
Week3	qualitative description of selection rules and Franck-Condon principle
Week4	Qualitative description of σ , π and n M.O. their energy levels and their respective transitions
Week	IV. Solid State Definition of space lattice and unit cell.
Week6	Laws of crystallography-(i) Law of constancy of interfacial angles. (ii) Law of rationality of indices (iii) Law of symmetry elements in crystals
Week7	X-ray diffraction by crystals. Derivation of Bragg's equation. Determination of crystal structure of NaCl, KCl and CsCl (Laue's method and powder method
Week8	III. Photochemistry Interaction of radiation with matter, difference between thermal and photochemical process. Jablonski diagram depiciting various processes occurring in the excited state, qualitative description of fluorescence,
Week9	quantumyield, photosensitized reactions- energy transfer processes (simple examples).
Week10	Basic concepts of Laser and Maser. Photochemistry of vision and colour.
Weekll	Revision

Titule high.

Principal

Ovi. College, ROPAR

Head of Chemistry Deptt.

(AJAY KUMAR)

Distribution Of Syllabus & Lesson Plan/Teaching Plan (2020-21)

Name Of Department: Chemistry

Class:_B.Sc-3rd Yr(Sem-6)

Paper: C (Physical Chemistry)

Two weeks left for MST tentative and one week for revision /queries for MST

TIME PEROID	TOPICS TO BE COVERED
Week1	I. Raman Spectrum: Concept of polarizability, pure rotational and pure vibrational Raman spectra of diatomic molecules, selection rules
Week2	II. Electronic Spectrum: Concept of potential energy curves for bonding and antibondingmolecular orbitals
Week3	qualitative description of selection rules and Franck-Condon principle
Week4	Qualitative description of σ , π and n M.O. their energy levels and their respective transitions
Week	IV. Solid State Definition of space lattice and unit cell.
Week6	Laws of crystallography-(i) Law of constancy of interfacial angles. (ii) Law of rationality of indices (iii) Law of symmetry elements in crystals
Week7	X-ray diffraction by crystals. Derivation of Bragg's equation. Determination of crystal structure of NaCI, KCI and CsCI (Laue's method and powder method
Week8	III. Photochemistry Interaction of radiation with matter, difference between thermal and photochemical process. Jablonski diagram depiciting various processes occurring in the excited state, qualitative description of fluorescence,
Week9	quantumyield, photosensitized reactions- energy transfer processes (simple examples).
Week10	Basic concepts of Laser and Maser. Photochemistry of vision and colour.
Week11	Revision

Principal

Out. College, ROPAR

Head of Chemistry Deptt.